ADM32F036C1QN56A 数字信号处理器

产品简介

湖南进芯电子科技有限公司

2025 年 02 月 V1.0

目 录

1	产品特性	1
2	系统概述	2
3	引脚排布及说明	3
4	芯片电源及预驱模块典型应用参考	7
5	预驱模块参数	9
	5.1 最大额定值	<u>c</u>
	5.2 推荐工作条件(无特别说明情况下,测试条件为T _A =25℃)	
	5.3 静态电气参数	
	5.4 动态电气参数	11
6	机械数据	12

1 产品特性

● 单源供电

- 5.0~70V
- 集成 LDO
- 集成 POR、BOR 电路

(LDO12V, IO 5V, 内核 1.2V, 模拟 3.0V)

● 高性能 32 位定点 DSP 内核

- -主频最高 100MHz
- -16×16、32×32 MAC 操作
- -16×16 双 MAC 操作
- -哈佛(Harvard)总线结构
- -快速中断响应和处理

● 可编程控制律加速单元(CLA)

- -32 位浮点加速运算器
- 加速代码与 CPU 代码并行执行

● 片内存储器资源

- 18K x 16 位 SARAM
- 64K x 16 位 Flash
- 8K x 16 位 BootROM

● 128 位安全密钥

ADC

- 12 位 SAR, 转换速率 4MSPS
- -13 通道, 带温度传感器通道
- 输入范围 0~3V,内部基准

● 运算放大器

- -1 个 OP, 可用于母线电流检测放大
- -2个 PGA, 可用于相电流检测放大

集成三相高、低侧半桥驱动电路

- -六路 NMOSPre-Driver
- -栅极驱动电路高侧最高浮动绝对电压达到 70V
- -驱动能力 IO+/IO-:+1.5A/-1.8A

● 电压比较器

- 3 个电压比较器 外部或内置 8bitDAC 电压参考, 输出关联 TZ, 支持逐周期封波保护

● 增强型控制外设

- 3 个 32 位定时/计数器
- 5 个 16 位定时/计数器
- -2 路 PWM 输出 (1 路支持 HRPWM)
- -1 个高精度捕获单元

● 中断

- 最多 53 个由 PIE 设置的中断

● 串行通讯外设

- CAN、SPI、SCI、LIN、IIC
- -1 通道 CANFD

IO

-15 个通用 IO

助钟

- -10M 片内振荡器
- 石英晶体振荡器/外部输入模式
- PLL 倍频系数 1x~12x

● 支持 WDT

● 支持 JTAG 在线仿真

- 分析和断点功能
- 基于硬件的实时调试

● QFN56 封装

● 温度范围 -40℃~+105℃

2 系统概述

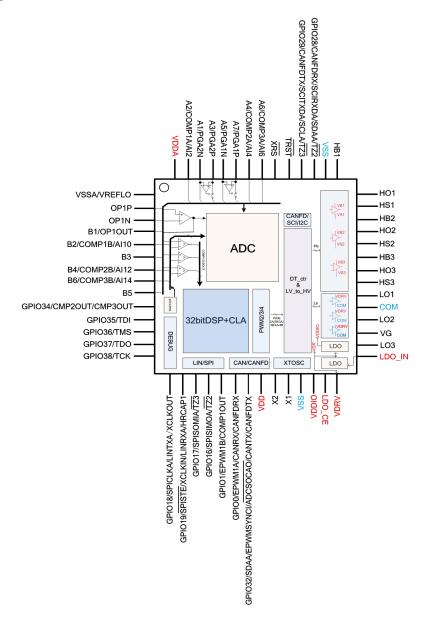


图 2-1 ADM32F036C1QN56A 系统框图

ADM32F036C1QN56A 是面向电机控制的 32 位 DSP 车规级改进型,集成 LDO 和 6NMOS 预驱 , 搭载 100M 主频 32 位 DSP 处理核+CLA , 增强型控制外设 , LIN、CAN、IIC、 SPI、SCI、HRCAP 和 1 通道 CANFD, 12 位 ADC,集成电压比较器、温度传感器;可构成 集成电机控制驱动核心,直接驱动功率管完成电机控制,支持有感、无感、方波、弦波等多模 式。

引脚排布及说明

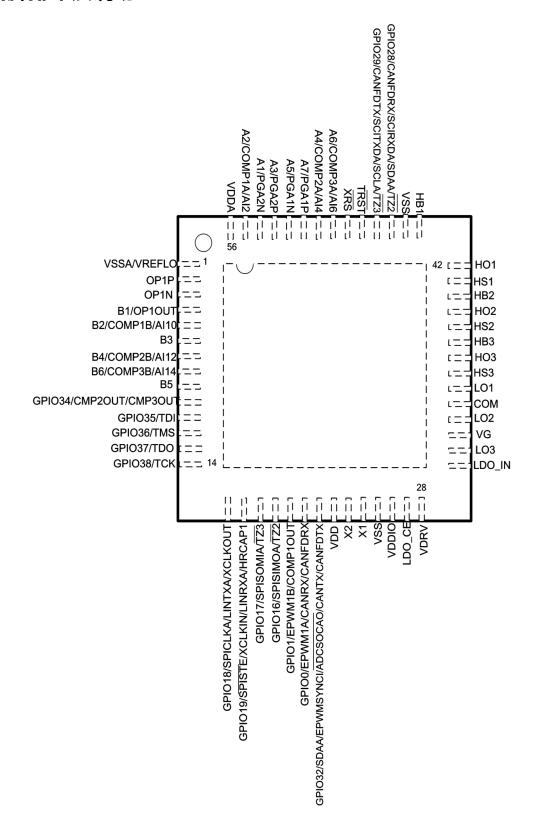


图 3-1 ADM32F036C1 芯片引脚排布-QFN56

ADM32F036C1QN56A Digital Signal Processor

V1.0

表 3-1 ADM32F036C1QN56A 芯片引脚功能定义

管脚	A7 ¥n	米刑	功能说明		
QFN-56	- 名称 - 名称	类型 			
1	VSSA/VREFLO	电源	模拟地及参考地 (禁止共用外部电流回路)		
2	OP1P	模拟输入	OPA1 输入正端		
3	OP1N	模拟输入	OPA1 输入负端		
4	B1/OP1OUT	模拟输入 模拟输出	ADC 通道输入 B1/OPA1 输出		
5	B2/COMP1B/AI10	模拟输入 数字输入	ADC 通道输入 B2/比较器 1B 输入端/数字输入 AI10(0~3V)		
6	В3	模拟输入	ADC 通道输入 B3		
7	B4/COMP2B/AI12	模拟输入 数字输入	ADC 通道输入 B4/比较器 2B 输入端/数字输入 AI12(0~3V)		
8	B6/COMP3B/AI14	模拟输入 数字输入	ADC 通道输入 B6 /比较器 3B 输入端/ 数字输入 AI14 (0~3V)		
9	B5	模拟输入	ADC 通道输入 B5		
10	GPIO34/CMP2OUT/CMP3OUT	数字 IO	通用 IO34 /比较器 2 输出 /比较器 3 输出		
11	GPIO35/TDI	数字 IO	通用 IO35/JTAG 数据输入		
12	GPIO36/TMS	数字 IO	通用 IO36/JTAG 模式选择		
13	GPIO37/TDO	数字 IO	通用 IO37/JTAG 数据输出		
14	GPIO38/TCK	数字 IO	通用 IO38/JTAG 时钟输入/外部时钟输入		
15	GPIO18/SPICLKA/	数字 IO	通用 IO18/SPI-A 时钟/		
15	LINTXA/XCLKOUT		LIN-A 发送//时钟输出		
16	GPIO19/SPISTEA/XCLKIN/LINR XA/HRCAP1	数字 IO	通用 IO19 /SPI-A 从发送使能//外部时钟输入 LIN-A 接收/ECAP1/HRCAP1		
17	GPIO17/SPISOMIA/TZ3	数字 IO	通用 IO17/SPI-A 从输出、主输入/TZ3 保护输入		
18	GPIO16/SIMOA/TZ2	数字 IO	通用 IO16/SP-A 从输入、主输出/TZ2 保护输入		
19	GPIO1/EPWM1B /COMP1OUT	数字 IO	通用 IO1 /PWM1B 输出/ 比较器 1 输出		
	GPIO0/EPWM1A/CANRX/	数字 IO	通用 IO0 /PWM1A、HRPWM 输出/CAN 接收/ CANFD 接		
20	CANFDRX		收		
	GPIO32/SDAA/EPWMSYNCI/	数字 IO	通用 IO32/IIC-A 数据/PWM 外部同步脉冲输入		
21	ADCSOCAO/CANTX/		/ADC 启动转换 A /CAN 发送/CANFD 发送		
	CANFDTX				
22	VDD	电源	内核电源 1.2V,外接去耦电容(禁止外接电源)		

ADM32F036C1QN56A Digital Signal Processor V1.0

<u> </u>	ADWI32F0300	C1Q1\301	A Digital Signal I locessol VI.0			
管脚 QFN-56	名称	类型	功能说明			
23	X2	模拟输出	晶体振荡器输出			
24	X1	模拟输入	晶体振荡器输入			
25	VSS	地	IO 及数字地			
26	VDDIO	电源	IO 及内部 LDO 电源 3.3V~5V , 外接去耦电容			
27	LDO_CE	电源	LDO(母线)使能引脚 ,低电平禁止预驱输出			
28	VDRV	电源	12V 预驱模拟电源,由内部 LDO 产生,连接外置 NPN 或 NMOS 的源端			
29	LDO_IN	电源	LDO(母线)输入引脚 , 5.0~70V			
30	LO3	输出	低端驱动 PWM 输出 3			
31	VG	输出	预驱外置 MOS 的栅极驱动脚			
32	LO2	输出	低端驱动 PWM 输出 2			
33	СОМ	电源	预驱模拟电源参考地,外部需单点连接至 VSS			
34	LO1	输出	低端驱动 PWM 输出 1			
35	HS3	电源	高端悬浮地端 3			
36	HO3	输出	高端驱动 PWM 输出 3			
37	HB3	电源	自举高端电源 3			
38	HS2	电源	高端悬浮地端 2			
39	HO2	输出	高端驱动 PWM 输出 2			
40	HB2	电源	自举高端电源 2			
41 HS1		电源	高端悬浮地端 1			
42	HO1	输出	高端驱动 PWM 输出 1			
43	HB1	电源	自举高端电源 1			
44	VSS	地	IO 及数字地			
45	GPIO28/CANFDRX/SCIRXDA/S DAA/TZ2	数字 IO	通用 IO28/CANFD 接收/SCI-A 接收/IIC-A 数据/TZ2 保护输入			
	GPIO29/CANFDTX/SCITXDA/S	数字 IO	通用 IO29/ CANFD 发送/SCI-A 发送			
46	CLA/TZ3		/IIC-A 时钟/TZ3 保护输入			
47	TRST	数字 IO	JTAG 复位			
48	XRS	数字 IO	复位			
49	A6/COMP3A/AI6	模拟输入	ADC 通道输入 A6/比较器输入 3A/			
73		数字输入	数字输入 AI6 (0~3V)			

Digital Signal Processor ADM32F036C1QN56A V1.0

管脚	112111211001		2-8-00-2-8-00-2-1		
	名称	类型	功能说明		
QFN-56	1110	大王	Chamaric		
50	A4/COMP2A/AI4	模拟输入	ADC 通道输入 A4/比较器输入 2A/		
30		数字输入	数字输入 AI4 (0~3V)		
51	A7/PGA1P	模拟输入	ADC 通道输入 A7/PGA1 输入正端		
52	A5/PGA1N	模拟输入	ADC 通道输入 A5/PGA1 输入负端		
53	A3/PGA2P	模拟输入	ADC 通道输入 A3/PGA2 输入正端		
54	A1/PGA2N	模拟输入	ADC 通道输入 A1/PGA2 输入负端		
	A2/COMP1A/AI2	模拟输入	ADC 通道输入 A2/比较器输入 1A		
55		数字输入	/数字输入 AI2 (0~3V)		
56	VDDA	电源	模拟电源 3V , 外接去耦电容 (禁止外接电源)		

4 芯片电源及预驱模块典型应用参考

如图 4-1 所示, ADM32F036C1QN56A 芯片的电源以及预驱模块典型应用参考图。

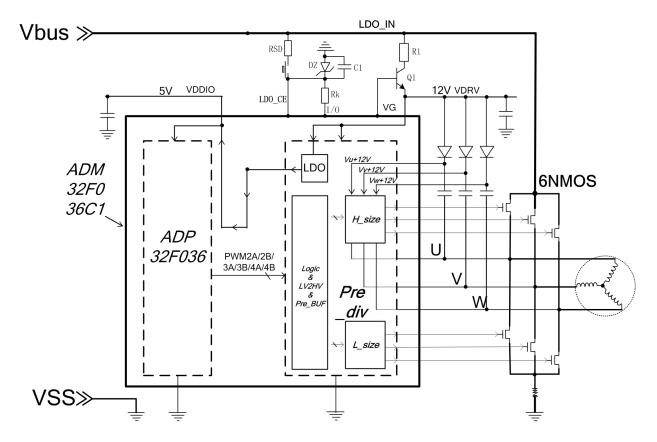


图 4-1 ADM32F036C1QN56A芯片外围电源及预驱模块参考原理图

在 12V 应用下, LDO IN 和 VDRV 可以直接短接, Q1 和 R1 可以不需要。 在高压应用下,可以调整 R1 阻值来优化散热。

驱动模块典型应用图中,自举电容的值视具体应用而定, MOS管G级的限流电阻用于调 节驱动信号的上升时间。驱动模块第一相上、下桥输出信号HO₁和LO₁的前级输入分别对应 PWM4A、PWM4B, HO2和LO2的前级输入分别对应 DSP 的 PWM3A、PWM3B, HO3和LO3 的前级输入分别对应 PWM2A、PWM2B。

需注意的是,控制预驱模块的HOx和LOx前级输入PWM信号,均为高电平有效。预驱模

块自带 0.2uS 硬件死区,可防止 H 桥直通。

ADM16F03C1 的使能控制 LDO_CE 为低电平时,将关闭 VG 和 VDDIO,使芯片进入低功耗模式。针对外部激活应用,LDO_CE 脚具有自锁功能。参照图 4-1 典型应用参考图:

- 1、初始状态为按键断开,LDO_CE 口内部下拉电阻到 GND,为低电平,VG 和 VDDIO不输出。
- 2、当按键按下,输入电压通过 RSD 电阻为 LDO_CE 口供电,LDO_CE 口为高电平(内部稳压管将 LDO_CE 口钳位在 6V 左右,防止与其连接 I/O 受损),芯片开始工作。此时,芯片内部有大约 30uA 的上拉恒流源对 LDO_CE 口进行上拉。
- 3、当按键松开后,由于上拉恒流源的存在,LDO_CE口不会变低,电压会稳定在3V左右, 芯片仍处于工作状态。
- 4、芯片正常工作后,可以通过 RK 电阻,输出低电平来关断 LDO_CE 口,使芯片进入低功耗模式。

系统设计上,仅需提供V_{bus}供电电源和少量的外围器件,即可实现 BLDC、PMSM 等电机的带传感器或无传感器的方波或正弦波控制算法。

5 预驱模块参数

5.1 最大额定值

A 181 1-11-					
参数名称	符号	最小值	典型值	最大值	单位
上桥臂自举电源	V_B	-0.3		70	V
上桥臂悬浮端	V_S	V _B -20		V _B +0.3	V
上桥臂驱动输出电压	V_{HO}	V _s -0.3		V _B +0.3	V
电源	V_{DRV}	-0.3	12	20	V
下桥臂驱动输出电压	V_{LO}	-0.3		V _{CC} +0.3	
上、下桥臂输入电平	V_{IN}	-0.3		6.5	V
工作结温范围	T_{j}	-40		150	℃
工作环境温度范围	T_A	-40		125	℃
储存温度范围	T_{stg}	-65		150	
热阻	$ heta_{ extit{ iny JA}}$			160	° C/W

注:

- (1) 器件运行条件超过上述各项最大额定值时可能造成永久性损伤。上述参数仅是运行条件的极大值,禁止将器件使用在 超出该规范下运行。如器件长时间工作在最大极限条件下,将影响器件运行稳定性。
- (2) 无特殊说明, 所有的电压均以 GND 作为参考。

5.2 推荐工作条件 (无特别说明情况下,测试条件为T_A=25℃)

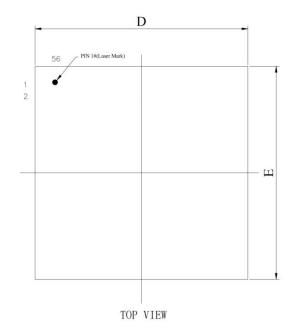
	** •		推荐值		24.13
参数名称	符号	最小值	典型值	最大值	单位
电源	V_{DRV}	5	15		V
上桥臂悬浮端	V_S	V _B -15	V _B +0.3		V
上桥臂自举电源	V_B	-0.3		60	V
上桥臂驱动输出电压	V_{HO}	V _s -0.3	V _B +0.3		V
下桥臂驱动输出电压	V_{LO}	-0.3	15		V
上、下桥臂输入电平	V_{IN}	-0.3	5.0		V
工作环境温度	T_A	-40		125	°C
结温	T_J	-40		150	°C
工作环境温度范围	T_A	-40		125	°C

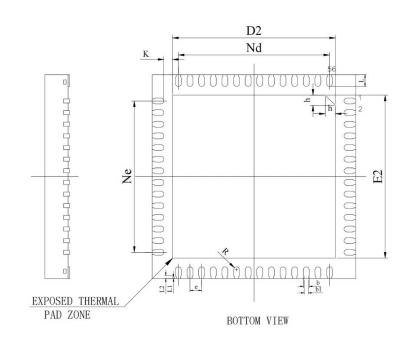
5.3 静态电气参数

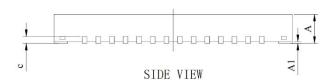
静态电气参数(无特别说明,测试条件为 LDO_IN=24V,CL=1000pF T_A =25°C)

4, 314, 44		推荐值			
参数名称	符号	最小值	典型值	最大值	单位
电源电压	V_{DRV}		12		V
静态电流 V _{IN} = 0V / 5V	I_{QCC}		230		uA
上桥臂自举静态电流	I_{QBS}		60		uA
<i>V_{IN}</i> = 0V / 5V					
输入高电平	V_{IH}	2.0			V
输入低电平	V_{IL}			0.8	V
欠压保护上点	VCC_{UV+}		4.9		V
欠压保护下点	VCC_{UV-}		4.7		V
输出灌电流,驱动高输出对地短路 $P_W \leq 10 \mu S$	I_{O+}		1.5		А
输出拉电流,驱动低输出对地短路 $P_W \leq 10 \mu S$	I ₀ _		1.8		А

5.4 动态电气参数


动态电气参数(无特别说明情况下,LDO_IN=24V,CL=1000pF T_A =25°C)


A 181 1-11-	符号	推荐值				
参数名称		最小值	典型值	最大值	单位	
	高端输出	出 HO 开关时间	特性			
上升延时	T_{on}		280		ns	
下降延时	T_{off}		80		ns	
上升时间	T_r		25		ns	
下降时间	T_f		20		ns	
	低端输:	出 LO 开关时间	特性			
上升延时	T_{on}		280		ns	
下降延时	T_{off}		80		ns	
上升时间	T_r		25		ns	
下降时间	T_f		20		ns	
死区时间特性						
死区时间	DT		200		ns	
上升和下降死区时间差值	MT		10		ns	



6 机械数据

单位: mm QFN56

SYMBOL	MILLIMETER				
STMBOL	MIN	NOM	MAX		
A	0.80	0.85	0.90		
A1	0	0.02	0.05		
b	0.15	0.20	0. 25		
b1		0. 14REI	7		
С		0. 203RI	EF		
D	6.90	7.00	7. 10		
D2	5. 50	5. 70			
е	0. 40BSC				
Nd	5. 20BSC				
Ne		5. 20BSC			
Е	6. 90	7. 00	7.10		
E2	5. 50	5. 60	5. 70		
L	0.35	0.45			
L1	0. 05REF				
L2	0. 10REF				
R	0.05 0.10 0.15				
K	0. 30REF				
h	0.30 0.35 0.40				

图 6-1 QFN56 封装外形尺寸图

联系方式

公司网址:www.advancechip.com

联系邮箱:sales@advancechip.com

销售联系电话:0731-88731027(长沙)

公司总部地址:长沙市湘江新区东方红街道北斗产业园•黄金园 A5 栋

南京销售中心:南京市秦淮区卡子门大街19号紫云智慧广场6号楼15层

